Skip Navigation
Skip to contents

Res Vestib Sci : Research in Vestibular Science

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "신경정보의 전달"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Article
The Linear Transmission of the Vestibular Neural Information by Galvanic Vestibular Stimulation
Gyutae Kim, Sangmin Lee, Kyu-Sung Kim
Res Vestib Sci. 2016;15(4):132-140.   Published online December 12, 2016
DOI: https://doi.org/10.21790/rvs.2016.15.4.132
  • 8,318 View
  • 101 Download
AbstractAbstract PDF
Objective: Growing hypotheses indicate the galvanic vestibular stimulation (GVS) as an alternative method to manage the symptoms of parkinson’s disease (PD). GVS is easy and safe for use, and non-invasive. However, it is elusive how the neural information caused by GVS is transmitted in the central nervous system and relieves PD symptoms. To answer this question, we investigated the transmission of neural information by GVS in the central vestibular system, focused on vestibular nucleus (VN).
Methods
Twenty guinea pigs were used for this study for the extracellular neuronal recordings in the VN. The neuronal responses to rotation and GVS were analyzed by curve-fitting, and the numerical responding features, amplitudes and baselines, were computed. The effects of stimuli were examined by comparing these features.
Results
Twenty six vestibular neurons (15 regular and 11 irregular neurons) were recorded. Comparing the difference of baselines, we found the neural information was linearly transmitted with a reduced sensitivity (0.75). The linearity in the neural transmission was stronger in the neuronal groups with regular (correlation coefficient [Cor. Coef.]=0.91) and low sensitive units (Cor. Coef.=0.93), compared with those with irregular (Cor. Coef.=0.86) and high-sensitive neurons (Cor. Coef.=0.77).
Conclusion
The neural information by GVS was linearly transmitted no matter what the neuronal characteristics were.

Res Vestib Sci : Research in Vestibular Science